Закон электромагнитной индукции. Полный магнитный поток (потокосцепление). Токи Фуко – Физика

Определение знака эдс индукции

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль →n к контуру образует правый винт с направлением обхода.

Пусть магнитная индукция →B внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем.

Тогда Φ>0 и ΔΦΔt..>0.

Согласно правилу Ленца индукционный ток создает магнитный поток Φ‘<0.

Линии магнитной индукции B’ магнитного поля индукционного тока изображены черным цветом. Следовательно, индукционный ток Ii согласно правилу буравчика направлен по часовой стрелке (против направления положительного обхода) и ЭДС индукции отрицательна.

Поэтому в законе электромагнитной индукции должен стоять знак «–», указывающий на то, что εi и ΔΦΔt.. имеют разные знаки:

εi=−ΔΦΔt..

Пример №1. Магнитный поток через контур проводника сопротивлением 3∙10–2 Ом за 2 с изменился на 1,2∙10–2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

Известно, что:

Ii=εiR..

εi=∣∣∣ΔΦΔt..∣∣∣

Следовательно:

Эдс индукции в движущихся проводниках

Электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле порождается переменным магнитным полем. Следовательно, изменяясь во времени, магнитное поле порождает электрическое поле. Но если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, которое в этом случае не может возникнуть, а другой причиной.

При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение.

Вычислим ЭДС индукции, возникающую в проводнике, движущемся в однородном магнитном поле (см. рисунок). Пусть сторона контура MN длиной l скользит с постоянной скоростью →v вдоль сторон NC и MD, оставаясь все это время параллельной стороне CD.

Вектор магнитной индукции →B однородного поля перпендикулярен проводнику и составляет угол α с направлением его скорости.

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна по модулю:

FL=|q|vBsin.α

Направлена эта сила вдоль проводника MN. Работа силы Лоренца на пути l положительна и составляет:

A=FLl=|q|vBlsin.α

Внимание!

Формула выше определяет неполную работу силы Лоренца. Кроме силы Лоренца имеется составляющая силы Лоренца, направленная против скорости проводника v. Такая составляющая тормозит проводник и совершает отрицательную работу. В результате полная работа силы Лоренца оказывается равной нулю.

Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению заряда q к этому заряду:

εi=A|q|..=vBlsin.α

Эта формула справедлива для любого проводника длиной l, движущегося со скоростью →v в однородном магнитном поле.

Ещё по теме:  Цветовая гамма для Хендай Солярис, таблица цветов - Интернет-магазин запчастей Бамперавто

В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна εi и остается неизменной, если скорость движения →v постоянна.

С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции. Магнитный поток через контур MNCD равен:

Φ=BScos.(90°−α)=BSsin.α

угол 90°−α представляет собой угол между векторами →B и нормалью →n к поверхности контура, а S — площадь контура MNCD.

Если считать, что в начальный момент времени t=0 проводник MN находится на расстоянии NC от проводника CD, то при перемещении проводника площадь S изменяется со временем следующим образом:

S=l(NC−vt)

За время ∆t площадь контура меняется на ΔS=−lvΔt. Знак «минус» указывает на то, что она уменьшается. Изменение магнитного потока за это время равно:

ΔΦ=−BvlΔtsin.α

Следовательно:

εi=−ΔΦΔt..=Bvlsin.α

Если весь контур MNCD движется в однородном магнитном поле, сохраняя свою ориентацию по отношению к вектору →B, то ЭДС индукции в контуре будет равна нулю, так как поток Φ через поверхность, ограниченную контуром, не меняется.

Объяснить это можно так. При движении контура в проводниках MN и CD возникают силы, действующие на электроны в направлениях от N к M и от C к D. Суммарная работа этих сил при обходе контура по часовой стрелке или против нее равна нулю.

Пример №2. Проводник длиной 50 см движется в однородном магнитном поле со скоростью 4 м/с перпендикулярно силовым линиям. Найдите разность потенциалов, возникающую на концах проводника, если вектор магнитной индукции 8 мТл.

50 см = 0,5 м

8 мТл = 8∙10–3 Тл

Так как проводник движется перпендикулярно силовым линиям, то угол α равен 90 градусам, а синус прямого угла равен единице. Поэтому:

εi=Bvlsin.α=8·10−3·4·0,5·1=16·10−3 (В)

Задание EF17754

Закон электромагнитной индукции. Полный магнитный поток (потокосцепление). Токи Фуко - ФизикаВ заштрихованной области на рисунке действует однородное магнитное поле, направленное перпендикулярно плоскости рисунка, В = 0,1 Тл. Проволочную квадратную рамку сопротивлением R=10Ом и стороной l=10см перемещают в плоскости рисунка поступательно со скоростью υ=1м/с. Чему равен индукционный ток в рамке в состоянии 1?

Ответ:

а) 1 мА

б) 5 мА

в) 10 мА

г) 20 мА


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать формулу для определения величины индукционного тока.

3.Записать закон электромагнитной индукции для движущихся проводников.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решения

Запишем исходные данные:

 Модуль вектора магнитной индукции однородного магнитного поля: B = 0,1 Тл.

Ещё по теме:  Размер шин и дисков на Hyundai, Solaris, II, 2017 - 2018 » Подбор шин по марке автомобиля

 Сопротивление внутри квадратной проволочной рамки: R = 10 Ом.

 Сторона рамки: l = 10 см.

 Скорость перемещения рамки: v = 1 м/с.

10 см = 0,1 м

Индукционный ток, возникающий в рамке, определяется по формуле:

Ii=εiR..

Закон электромагнитной индукции для движущихся проводников:

εi=vBlsin.α

Отсюда индукционный ток равен:

Ii=vBlsin.αR..

На рисунке вектор магнитной индукции направлен в сторону от наблюдателя. Следовательно, угол между направлением движения рамки и вектором магнитной индукции равен 90 градусам. А синус прямого угла равен единице. Тогда:

Ii=vBlsin.90°R..=1·,1·,1·110..=,001 (А)=1 (мА)

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17970

При вращении в однородном магнитном поле плоскости металлического кольца из тонкой проволоки вокруг оси, перпендикулярной линиям поля, максимальная сила индукционного тока, возникающего в кольце, равна I1. Чему будет равна максимальная сила индукционного тока I2 в этом кольце при уменьшении скорости вращения кольца в 2 раза?

Ответ:

а) I2 = 2I1

б) I2 = I1

в) I2 = 0,5I1

г) I2 = 4I1


Алгоритм решения

1.Записать закон электромагнитной индукции.

2.Установить зависимость между величиной индукционного тока и скоростью вращения рамки.

3.Определить, как изменится величина индукционного тока в кольце при уменьшении скорости ее вращения.

Решение

Запишем формулу закона электромагнитной индукции:

εi=ΔΦΔt..

Известно, что отношение изменения магнитного потока ко времени его изменения — это величина, характеризующая скорость этого изменения. Если кольцо в однородном магнитном поле вращать медленнее, то и магнитный поток начнет менять медленнее. Так как ЭДС индукции прямо пропорционально зависит от скорости изменения магнитного потока, то при уменьшении скорости вращения кольца в 2 раза она также уменьшится вдвое.

Также известно, что индукционный ток в рамке определяется формулой:

Ii=εiR..

Видно, что индукционный ток и ЭДС индукции — прямо пропорциональные величины. Следовательно, при уменьшении ЭДС индукции вдвое сила индукционного тока тоже уменьшится в 2 раза. Отсюда следует, что I2 = 0,5I1.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18860

Закон электромагнитной индукции. Полный магнитный поток (потокосцепление). Токи Фуко - ФизикаПо горизонтально расположенным шероховатым рельсам с пренебрежимо малым сопротивлением могут скользить два одинаковых стержня массой m = 100 г и сопротивлением R = 0,1 Ом каждый. Расстояние между рельсами l = 10 см, а коэффициент трения между стержнями и рельсами μ = 0,1  Рельсы со стержнями находятся в однородном вертикальном магнитном поле с индукцией B = 1 Тл (см. рисунок). Под действием горизонтальной силы, действующей на первый стержень вдоль рельс, оба стержня движутся поступательно равномерно с разными скоростями. Какова скорость движения первого стержня относительно второго? Самоиндукцией контура пренебречь. Ответ записать в системе СИ.

Ещё по теме:  Амортизаторы на Солярис: подбор и замена своими руками.

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Записать закон электромагнитной индукции для двигающихся стержней.

3.Выполнить решение задачи в общем виде.

4.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

100 г = 0,1 кг

10 см = 0,1 м

Когда под действием некой силы начинается двигаться первый стержень, магнитный поток, пронизывающий контур, образованные проводящими рельсами и двумя стержнями, меняется. Это приводит к возникновению в этом контуре электродвижущей силы, которую можно определить с помощью закона электромагнитной индукции для двигающихся стержней:

εi=vBlsin.α

Причем v — это разность скоростей стержней (v2 – v1), которая характеризует скорость изменения площади проводящего контура.

Индукционный ток, возникающей в этом контуре, можно выразить, используя закон Ома:

εi=IRк

где Rк — сопротивление контура. Так как стержни соединяются последовательно, и их сопротивления равны R, а сопротивление рельсов ничтожно мало, сопротивление контура равно:

Rк=2R

Отсюда закон Ома принимает вид:

εi=2IR

Тогда ток в контуре равен:

I=εi2R..=vBlsin.α2R..

С одной стороны на стержни действует сила Ампера, с другой — сила трения, возникающего между ними и рельсами. Так как стержни движутся равномерно, равнодействующая сил, приложенных к ним, равна нулю. Следовательно, сила трения и сила Ампера компенсируют друг друга (их модули равны):

Fтр=FА

μmg=BIlsin.α

Подставим сюда выражение, полученное для силы тока в контуре:

μmg=BvBlsin.α2R..lsin.α=vB2l2sin2.α2R..

Отсюда скорость равна:

v=2μmgRB2l2sin2.α..

Так как синус угла равен «1»:

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор | оценить

Закладка Постоянная ссылка.

Добавить комментарий

Ваш адрес email не будет опубликован.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.